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Bottlenecks in plant phenotyping: getting to
the root of the problem

Dr Jonathan Atkinson
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As genotyping technology has improved,
phenotyping has become a bottleneck in

crop improvement, particularly regarding
root traits.

Issues to overcome:

 Difficult data collection

 Methods often slow

* Technology expensive and
inaccessible

* |Image analysis challenges
* Lack of interest from breeders
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2D seedling
phenotyping
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Growth room Imaging Software

e 600 plants in growth pouches e Computer controlled SLR RootNav (Pound et al., 2013)

* 2 weeks growth * Modified copy stand ‘semi automatic’ image analysis

* Gravity fed automatic watering * QR code system for plant identification

S

European
Plant
Phenotyping
*Network

Atkinson et al., 2015
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Savannah Rialto
e Group4 X e Groupl
* Feed wheat  Bread wheat
* \Very High Yield * High quality

e 132 doubled haploid lines

* All genotyped using iSelect 80k SNP array —
publically available maps for 44k of those SNPs

* 96 lines (20 replicates) phenotyped using the

2D pipeline .
PP Limagrain D

from zarzh te life
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QTLs: SavRia - RTLS - 6D
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RNAseq ==

Collaboration with
Laura Gardiner
(Earlham)

NILS e

Collaboration with .
Limagrain

18 candidate
genes

Currently
phenotyping
Being evaluated in
the field

18cM
introgression
which confers the
phenotype
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Machine learning :

1. ‘Traditional’ machine learning

e PRIMAL - Random Forest

2. Deep learning

* Convolutional neural networks (CNNs)
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¥ PRIMAL
I Auto:atled. Semi-automated
mage Analysis .
8 y # Pipeline of Root Image analysis # Image Analysis

* Fast using MAchine Learning. * Time consuming
* Prone to error e Accurate data

https://plantmodelling.github.io/primal/

Atkinson & Lobet et al., Gigascience 2017; doi: 10.1093/gigascience/gix084 Lobet et al., Front Plant Sci 2017; doi: 10.3389/fpls.2017.00447.
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Trait Manual Automatic Primal (600
(RootNav) (Rial) |mages)

W/D ratio 2.71 . . . .

e E—— _ * Requires around 600 training images to
Totallroetianath 24 16.0 be analyzed to achieve an R? of ~0.9
Mean seminal length 22.2 14.0
rateral count = 0 e 12/13 QTL discovered using PRIMAL vs
Total lateral length 6.4 12.6
Total seminal length 25.6 15.2 ROOtNaV
Width 6.4 13.5 13.1
Dt 22 126 58 * Does sometimes create false positives
W/D rati .

/D ratio with low LOD scores, but these often

7A  Seminal number 2.1 . . , ,

P 54 co-localise with other ‘real’ QTL

Seminal number

Total lateral length 2 4.2
Total root length 9 . 3.1
Total seminal length 9.7 _ 2.8

Atkinson & Lobet et al., Gigascience 2017; doi: 10.1093/gigascience/gix084 Lobet et al., Front Plant Sci 2017; doi: 10.3389/fpls.2017.00447.
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Relies on training a network using a large
number of annotated images
* The more training data you use,
the better it becomes

Does not use pre-computed features

Once trained, the network can annotate
new images

Performance

Deep learning

Older learming
algorithms

Amount of data
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e >97% accuracy in most of the example uses we’ve tested
* LeMuR: Plant Root Phenotyping via Learned Multi-resolution Image Segmentation

Pound et al., 2017 (Gigascience)
Pound et al., 2017 (ICCV)




* Xylem and phloem number

* Number of cortical cell files

©
&
>
<=
(@
c
Q
} &
Q
©
©
O
)
| &
(@
(@
)
O
@)
L &
I
@)
Q
(@
c
Q
7)]
Q
|
(a1
°

Sectioning can be slow and time

consuming

High throughput equipment such as LAT

is expensive
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* Simple protocol using inexpensive 3D printed moulds

* Agarose embedding

* Fast ‘thick sectioning’ either using a vibratome or by hand

e Rapid staining (30 seconds) using very concentrated Calcofluor
* |maging on a confocal microscope

 ~200 samples per day (including sampling from the field)
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N
Channel 1. 408 laser Channel 2. 488 laser Channel 3. 408 laser
450/35 (blue) detector 605/75 (red) detector. 515/30 (green) detector

Low gain

Exploiting differential staining properties of calcofluor and autoflurescence to detect xylem and phloem cells

3 separate images are taken using different lasers, detectors and settings captured automatically



Channel 1. 408 laser Channel 2. 488 laser Channel 3. 408 laser
450/35 (blue) detector 605/75 (red) detector. 515/30 (green) detector

Low gain

Exploiting differential staining properties of calcofluor and autoflurescence to detect xylem and phloem cells

3 separate images are taken using different lasers, detectors and settings captured automatically
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Sugar Beet

Wheat (cv. Savannah)



Pavon 76

Th. bessarabicum




Screening germplasm
from lan and Julie King

Changes in root
diameter,
phloem/xylem pole
count, aerenchyma, etc

The bottleneck again is
Image analysis and
data quantification

Another application for
Deep Machine
Learning
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* 3 X-ray CT scanners covering ca. 1 um to 150 um
resolution

* Samples sizes up to 25 cm diameter & 1 m length

* Automated sample delivery
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Nitrogen Uptake Efficiency in Wheat

Line 52 Line 29
Low NUpE in both high High NUpE particularly
& low N field trials in Low N field trials

Total Root Length
Lateral Root Length
(mm, SE*1)
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Low N treatment
(0.75 mM N)

Griffiths et al., unpublished



Effect of fungal pathogens on roots

Tomato (control) Tomato (+ Rhizoctonia)

/’ b



Oryza latifolia Oryza minuta

025
018
.02
0os
000
14.0 Porosity (%) 5.57
0.00848 Mean Thickness (mm) 0.00795
0.0181 Max. Thickness (mm) 0.0152
59.6 Surface Area:Vol 27.0

Andrew Mathers, unpublished
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LCT — Large x-ray CT scanner
Custom built by GE
Automated sample handling

1 m x 25 cm diameter soil columns
(~60 kg with wet soil)

100-150 um resolution

~ 3-4 hours per scan







Temporal development of wheat
over 6 months, from seedling to
maturity

Marcus Griffiths, unpublished



Ancient relatives of
wheat

e Variation for useful
agricultural traits
such as more roots
at depth

* Select WISP/DFW
introgression
panels from the
lan and Julie King
which may have
beneficial root
architecture traits

Atkinson & Atkinson, unpublished

T. urartu

Ae. speltodies

T. dicoccoides

1150 mm

Ae. tauschii

T. aestivum
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e Data collection is entirely automated
* The rate limiting step is analysis

 We are now looking to apply deep
machine learning to X-ray CT.

* Due to the volume of data, having

enough processing power is the next
major hurdle.



University of

Nottingham Summary

UK | CHINA  MALAYSIA

* High throughput — 2D seedling screen

* Medium throughput - Anatomics

Throughput

* Low throughput high detail - X-ray CT

All of these methods can be improved by better image analysis,
particularly deep learning
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